

MR-M8440-D 简要说明

MR-M8440-D 为 RS485 型 8 通道开关量输入(DI)、4 通道开关量漏输出(DO)、4 通道模拟量输入(AI)混合模块模块。开关量输入通道支持干接点(开关触点)信号及不高于 30V DC 湿接点(电平)信号的接入检测,模拟量输入每个通道均支持标准的 0~5V、1~5V 电压信号和 0~20mA、4~20mA 电流信号输入,以及其它不超过 5V 电压、20mA 电流的非标准信号输入。

一、参数列表

194X			
	通道数	8(隔离电压 1500VDC)	
数字量输入接口	输入类型	开关触点信号或电平信号	
(DI)	高电平(数字 1)	3.5VDC~30VDC, 6mA (24V)	
	低电平(数字0)	≤1VDC	
	通道数	4(隔离电压 1500VDC)	
	输出类型	光耦隔离型晶体管漏极输出	
数字量输出接口	最大负载电压/电流	30VDC / 100mA	
(DO)	截止-漏电流	小于 20μA	
	导通-饱和电压	1V (100mA)	
	DO 最大功耗	小于 150mW	
	通道数	4(隔离电压 1500VDC)	
	输入类型	电压信号或电流信号	
	输入范围(各通道可独	电压输入: 0~5V, 1~5V	
模拟量输入接口	立控制)	电流输入: 0~20mA,4~20mA	
(AI)	±△) 17∏ ↓	电压输入: 差模 400kΩ, 共模 100kΩ	
	输入阻抗	电流输入: 250Ω	
	ADC 分辨率,采样精度	12 位;0.2%	
	采样速率	50 次/秒(4 通道)	
	接口类型	RS485	
	波特率	1200~115200bps 可设置,初始为 19200bps	
串口通信参数	通讯格式	8 位数据位, 无校验, 1 位停止位, 1 位起始位	
	通讯协议	Modbus RTU	
	地址范围	1~31, 初始地址为 1	
	ESD 保护	15KV	
ф гэ / □ +è	隔离电压	1500VDC	
串口保护	浪涌保护	600W	
	串口过流,过压	60V, 1A	
	电源规格	12~24V DC,反接保护	
山 版	功耗	1.8W	
电源参数	浪涌保护	600W	
	电源过压,过流	30V, 2A	
丁//	工作温度,湿度	-10℃~50℃,5~95%RH,不凝露	
工作环境	储存温度,湿度	- 40℃~85℃,5~95%RH,不凝露	
	尺寸	145mm*90mm*40mm	
#+ 6h	外壳材质	ABS 工程塑料	
其他	安装方式	标准 DIN 导轨安装或螺丝安装	
	保修	3年质保	

二、指示灯说明

指示灯工作状态		描述	指示灯工作状态		描述	
	RUN	绿色常亮	正常	DATA	绿色闪烁①	正在收发通讯数据包
	(运行状态指示灯)	红色 1s 闪烁	模块 EEPROM 故障	(通讯状态指示灯)	红色 1s 闪烁	通讯超时

注①: DATA 指示灯绿色闪烁频率和通讯状态有关。波特率越高,闪烁越快;通讯越频繁,闪烁越快;若总线上无数据包传输,则不闪烁。

三、引脚说明

VS+ 电源正极	L-	开关量输出公共端,接负载电源负极
----------	----	------------------

GND	电源负极	DO0~DO3	开关量信号输出端
A/485+	RS485+ (485 总线 A 信号线)	L+	开关量输出保护端,接负载电源正极
B/485-	RS485-(485 总线 B 信号线)	1V+~4V+	电压量输入正端
PE	大地	1I+∼4I+	电流量输入正端
DI0~DI7	开关量信号输入端	1V-∼4V-	模拟量信号(电压量/电流量)输入负端
COM1	开关量信号输入公共端	AGND	模拟量信号输入地

拨码开关 54321

00000

00001

00010

.

11111

地址

0

1

2

31

四、拨码开关说明

约定: 拨码开关拨到"on"位置表示"1", 拨码开关拨到"off" 位置表示"0"

1、设备地址设置

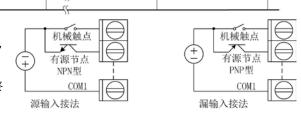
拨码开关的 $5\sim1$ 位用于设置设备地址,采用二进制格式表示,5 为最高位,1 为最低位。地址范围从 $0\sim31$,其中 0 为广播地址,不能使用。出厂默认地址为 1。

2、波特率设置	拨码开关 10	是否启用终端电阻
拨码开关的8~6位用于设置波特率,出厂默认波特率	0 (断开
为 19200bps。	1 1	启用

拨码开关 876	波特率 (bps)
000	1200
0 0 1	2400
0 1 0	4800
0 1 1	9600
100	19200
1 0 1	38400
110	57600
111	115200

3、终端电阻设置

拨码开关的 10、9 位用于设置是否启用模块内置的终端电阻。当拨码开关 10、9 都为 1 时,模块内的终端电阻连接到 RS485 总线上;都为 0 时,断开终端电阻。默认为断开终端电阻状态。**注意:**连接或断开终端电阻时,拨码开关第 10、9 位一定要同时为 1 或 0。


五、接线说明

1、电源和通讯线连接

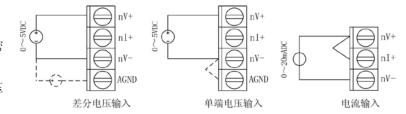
在接线时请注意:

- 1、请使用 12-24V DC 电源供电,推荐 24V DC;
- 2、连接电源时,MR-M8440-D 的 VS+端子连接电源正端,GND 端子连接电源负端;
- 3、连接 RS485 通讯线时, MR-M8440-D 的 A/485+端必须连接到同一条 485 总线的 A 信号线上, B/485-端必须连接到同一条 485 总线的 B 信号线上, 否则会引起总线通讯异常;同一条 485 总线上 RS485 设备必须具有不同的地址码;
- 4、终端电阻必须连接到 485 总线干线的两端。可以用 MR-M8440-D 中集成的终端电阻,也可以外加 120Ω 电阻。MR-M8440-D 集成终端电阻参见终端电阻设置;施工时应尽量减小支线长度,推荐采用标准手拉手接线方式。

| The state of th

2、开关量输入连接

MR-M8440-D 具有 8 通道开关量输入。开关量输入的公共端 COM1 可以接电源的正极,也可以接电源的负极,推荐接负极。DI 高电平(数字 1): 3.5VDC~30VDC,6mA(24V),低电平(数字 0): \leq 1VDC。**注意**: 要求开关量输入信号有一定的驱动能力,否则会得到错误结果。


2、开关量输出连接

MR-M8440-D 具有 4 通道开关量输出(晶体管漏输出),DO0~DO3 为各通道开关量输出信号端,L-为开关量输出的公共端,接负载驱动电源的负极; L+为续流二极管公共端,可不接或接负载驱动电源正极,当负载为线圈时,可以该二极管消线圈反电动势。**注意:**必须限制负载电流和电压的大小,超出模块许可范围的负载会损坏模块。本模块只可带小功率负载,如需带大功率负载,请通过继电器或接触器等器件转接;如果负载为感性负载(如继电器,电磁特等),请把 L+端和负载驱动电源正极相连,以消除感性负载关断时的感应电动势。

3、模拟量输入连接

MR-M8440-D 具有 4 通道模拟量输入,采用差分输入电路,可以输入差分电压信号; 电流信号经模块内部集成的 250Ω 精密电阻转换成电压信号输入。模拟量输入部分采用隔离电源供电。

注意:必须限制输入信号的共模电压大小,过高的共模电压 将导致输入电路饱和而得到错误结果,并可能会损坏模块。

1、差分电压信号和单端电压信号:信号正端接 nV+,负端接 nV-。2、电流信号:电流从 nI+流入,从 nV-流出,必须把该通道的 nV+和 nI+相连。

差分信号就是信号正负端电平相对于模块 AGND 电平都不同;单端信号就是信号负端电平与模块 AGND 电平相同,通常就是与 AGND 端相连。

DO1